

Business from technology

GC based analysis of tar, ammonia and water

Matti Reinikainen, D. Sc. Principal Scientist, VTT

Measurement, Analysis and Monitoring of Condensable Gas Components (especially Tar) in Product-Gases from Biomass Gasification and Pyrolysis International Workshop, June 8th 2011 at 19th EU Biomass Conference and Exhibition, ICC Berlin

Advanced analysis techniques for gasification gas

- The aim has been to develop better analysis methods for the impurities in biomass gasification gas
 - Shorten the analysis time, improve accuracy and reduce labor intensity
 - From off-line to on-line
- Research subjects:
 - Analysis of small concentrations of sulphur in the gasification gas
 - Improved analysis method for alkalimetals
 - Establish <u>on-line-tar analysis</u> for light tars
 - Improved NH₃- and HCN-measurement methods
- Development work in a projects with Carbona, Neste, Stora-Enso, Foster Wheeler, Metso, VAPO, UPM and Gasum

'Rapid' on-line tar analysis of reformed gasification gas

- Analysis time 5-20 min (several possible operation modes)
- Calibrated compounds:
 - Benzene
 - Toluene
 - Naphthalene
 - Phenanthrene
 - Anthracene
 - Fluoranthene
 - Pyrene
 - (if desired, 40 additional compounds)
- HP-1 (10 m x 0.53 mm x 0.26 μm) or HP Ultra 2 –column (25 m x 0.32 mm x 0.52 μm)
- Gas phase samples online
- Connected to the gasifier automation system
- Has been in use at VTT for more than three Years

Validation of the on-line tar measurement method

- More than 500 on- and off-line tar measurements were carried out
- Under carefully controlled conditions both the Tar Protocol and the on-line method give consistent results

Example of rapid tar measurement by on-line-GC

Air-blown CFB gasification followed by tar reformer

On-line analysis of tars, water and ammonia 1/3

Simultaneous injection to two different columns:

Column 1: HP-1 for the analysis of hydrocarbons (FID)

Column 2: Poraplot-Q for the analysis of water (TCD) and ammonia (PID). TCD and PID in series.

On-line analysis of tars, water and ammonia 2/3

On-line analysis of tars, water and ammonia 3/3

9

Dilution sampling

- Based on technology patented by VTT (e.g. WO/2007/080221)
- Can be applied to both atmospheric and pressurised systems
- Temperature range 280-800°C
- Dilution ratio typically 0-100
- Can be used for instance with a GC, ICP or FT-IR
- Results with tarry raw gas have been promising
 - Results consistent with controlled offline sampling
 - No problems with condensation of tars in the sampling lines
 - Good repeatability
 - Now in regular use at one site Finland
- Under continuous development

Dilution sampling: tar measurement of tarry gas

Benzene	Acenaphtylene
Pyridine	Acenaphthene
Toluene	Dibenzofurane
Ethenylbenzene	Bibenzyl
m-Xylene	Fluorene
Ethynylbenzene	Phenanthere
Styrene	Anthracene
o-Xylene	Carbazole
Benzaldehyde	1-Phenylnaphthalene
Phenol	2-Methylanthracene
Benzonitrile	4H-Cyclopenta(def)Phenantherene
4-Methylstyrene	Fluoranthene
Indene	Benz(e)acenaphthylene
o-Cresol	Pyrene
m+p-Cresol	Chrysene
Naphthalene	1,2 Benzanthracene
Quinoline	2,3 Benzanthracene
Isoquinoline	Benzo(b)fluoranthene
Quinatsoline	Benzo(e)pyrene
1H-Indole	Benzo(a)pyrene
2-Methylnaphthalene	Perylene
1-Methylnaphthalene	Benzo(ghi)peryle
Biphenyl	Anthanthrene
2-Ethylnaphthalene	Coronene
1.6 Dimethylnaphtalene	

Dilution sampling: tar measurement of tarry gas

Development of a cheap and robust ICP-method for the on-line metal analysis

- ICP can be used for the simultaneous analysis of several metals (Na, K, Fe, Ni, Cu, Zn, Sb...)
- Plasma is generated using power transistors by ramping the frequency until resonance is achieved according to a VTT's patented method
- Typical bands of various metals can be detected not only from a dry gas but also from wet gas or liquid solutions
- Method was successfully tested with real gasification gas

12

Analysis of HCN using static head space-technique (HS/GC-FID)

- 5 ml of 1:2 H₂SO₄ / water is injected to a gas tight 20 ml ampoule. The ampoule is sealed with a septum cap. 1 ml of sample (pH = 12) is injected through the septum on the H₂SO₄-solution.
- The sample ampoule is heated in the HS-apparatus at 80 °C for 5 min and then injected to GC-FID-analysis

